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Abstract 

The recent realization that entire communities fuse and separate (community coalescence) has led to a 

reappraisal of the forces determining species diversity and dynamics, especially in microbial communities 

where coalescence is likely widespread. To understand if connectedness by coalescence results in 

different outcomes from connectedness by individual dispersal, we investigated chance processes leading 

to loss of species diversity using a model of a neutral two-species metacommunity. Two scenarios   

were investigated: (a) ‘pairwise coalescence’ where the communities coalesce in pairs, intermix 

and then separate; (b) ‘diffuse coalescence’ where several communities mix as a pool and are re-

distributed to their original patches. When standardized for the same net movement, both types 

of coalescence led to a longer time to single species dominance than dispersal. Coalescence 

therefore may be an important process contributing to the surprisingly high microbial species 

diversity in nature. 
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Introduction 

 The realization that local communities are not independent but interact with each other 

through movement of individuals (Wilson 1992; Leibold et al. 2004) has greatly increased our 

understanding of the drivers of local and regional species diversity (Matthiessen & Hillebrand 

2006; Venail et al. 2008). It has been proposed that in microbial systems another process, namely 

community coalescence, may be especially important (Rillig et al. 2015). In this process the 

whole community (perhaps together with the habitat) may wholly or partly merge with another 

community. This might occur, for example, when an endophyte community in a leaf contacts the 

soil community during leaf fall, when microbiomes are transferred during close human oral or 

genital contact, or when a group of ponds are transiently connected by periodic flooding or by 

tides. There is compelling evidence that coalescent events happen in nature in both terrestrial and 

aquatic habitats, especially at the microbial scale (Rillig et al. 2016; Mansour et al. 2018). Many 

factors may influence the outcome of coalescence, including the frequency of the coalescence 

events, the level and type of concurrent environmental exchange, and whether the coalescence is 

wholesale or consists of the exchange of only a small fraction of the original communities (Rillig 

et al. 2015).  

 A recent theoretical study (Tikhonov 2016), showed that communities even in the 

absence of direct cooperation between the interacting species tended to persist following 

coalescence, indicating community level cohesion, as first suggested by Gilpin (1994). This 

theoretical possibility has been confirmed by experimental studies showing that anaerobic 

communities with the greatest productivity as measured by methane production, were the ones 

that tended to persist following coalescence (Sierocinski et al. 2017).  

 To develop a theoretical framework for understanding how coalescence events affect 

metacommunity dynamics, we compare a neutral model of communities connected by 

coalescence with a neutral model of communities connected by individual dispersal, yet with 

equivalent levels of overall movement. We investigate two types of coalescent process. In one 

type, there is pairwise contacts among patches, their communities merge, and then separate. The 

biology here can be envisaged to occur, for example, with oral or genital contacts in humans 

where the coalescence is transient, pairwise and relatively symmetrical. Such pairwise 

coalescence could be called the “kiss-and-run” model. In the other type of coalescence, which we 

term diffuse, we envisage a group of ponds or rock-pools that are periodically flooded, where 
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ponds merge, but then as the flood recedes, the component species recolonize those same pools 

at random. Such diffuse coalescence could be called the “flooded-ponds” model. In many ways, 

these processes are analogous to the “stepping-stone” and “island” models of dispersal in 

population genetics (Wright 1943; Kimura 1953). 

 Our results show that time to monodominance is generally longer for communities 

connected by coalescence than by dispersal, which implies that if much of the dynamics is 

transient, coalescence may be an important factor contributing to the observed high species 

diversity of many microbial systems.  

  

Methods 

Throughout, we assume a metacommunity of N individuals belonging to two species 

distributed over a set of p patches (or islands) each consisting of n individuals (N = pn). The 

model is neutral in the sense that individuals of both species have the same birth, death, and 

movement rates, but these processes are instantiated stochastically (see below). We assume patch 

structure is deterministic (p and n are constant). Movement among patches occurs either by 

dispersal of single individuals or by patches becoming interconnected (coalescing). Throughout, 

we use the term dispersal in a technical sense to represent movement of single individuals 

among patches (the classical metacommunity scenario), and the term coalescence in a technical 

sense to represent movement that results from fusion of communities that are in the patches. 

Coalescence refers to community coalescence sensu Rillig et al. (2016) and not to coalescence 

through ancestry as in population genetics. We use the term movement to refer to the transfer of 

individuals among patches of the metacommunity regardless of the mechanism by which this is 

achieved. We assume movement does not change patch size. Coalescence and dispersal represent 

complementary mechanisms of movement in the metacommunity, and microbial systems most 

likely experience both. To disentangle their relative effects, we assume the patches are connected 

exclusively either by coalescence events or by dispersal events.  

As the common unit of movement, we used the parameter m, representing the probability 

that an individual will be found in a different patch from its original location after a single time 

step. Note that this is not the per patch movement rate, as this latter will vary with the degree of 

subdivision of the metacommunity. We used two implementations of stochastic birth-death 

processes known as the Moran and the Fisher-Wright models (Blythe and McKane 2007). The 
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Fisher-Wright model permitted deterministic implementation of movement, so ensuring 

differences between dispersal and coalescence were not due to the way stochasticity was 

implemented for the two types of movement.  

Usually, when these two model structures are implemented in systems with patch 

structure, movement occurs as part of the birth-death process with dispersal being instantiated by 

assuming that a proportion of the individuals that die in a patch are replaced by births from other 

patches (Moran 1959, 1962; Wakeley & Takahashi 2004). However, to accommodate dispersal 

and coalescence equivalently, we separated the stochastic within-patch birth-death processes 

from the movement processes (Parra-Rojas and McKane 2018). There are strong parallels 

between community subdivision in ecology and population subdivision in population genetics, 

and that the model structure presented here applies equally to two haploid genotypes within a 

metapopulation (Blythe & McKane 2007). Coalescent scenarios are therefore also generalizable 

to genetic variants within species. For example, in social animals, whole groups may coalesce 

and separate such that changes in the organizational structure of social groups modifies allele 

frequencies (Mihaljevic 2012).  

Moran model  

Birth-death: At each time step, an individual in the metacommunity died and was replaced by an 

individual chosen randomly based on its frequency in the patch prior to the death (Moran 1958, 

Hubbell 1979). This metacommunity was therefore composed of individuals with overlapping 

generations, each with an expected life span of 1/N time steps. Normally, this Moran process is 

applied to a single species or patch, but because we wanted to assess the effects of subdivision 

for comparisons between coalescence and dispersal, N here is the number of individuals in the 

metacommunity.   

Dispersal: To equate as far as possible the stochastic processes occurring in dispersal and 

coalescence, we simulated dispersal by a process analogous to the way we instantiated pairwise 

coalescence (see below). At each time step, with probability m, we identified one random 

individual in each of two different patches. These individuals were then re-assigned to their 

source patches at random with equal probability. In this way, half the re-assignments resulted in 

no movement events, whereas half of them resulted in the movement (exchange) of two 

individuals, thus averaging one individual being dispersed between patches. No more than one 

dispersal event per metacommunity per time step was allowed. 
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Pairwise coalescence: For pairwise coalescence (the “kiss-and-run” model), at each time step 

following birth-death, a ‘focal’ patch was chosen at random with probability c=m/n and the 

individuals in that patch were pooled with those in another patch. Individuals were then 

randomly re-assigned into the two patches, such that on average half the individuals returned to 

their original patch while half moved between patches. Therefore, one coalescence event 

between two patches of n individuals resulted in an average of n movement events. No more than 

one coalescent event per metacommunity per time step was allowed. In effect, dispersal is frequent 

movement of a few individuals among patches, whereas pairwise coalescence events are less frequent, but 

each event moves more individuals between fewer patches.   

Diffuse coalescence: More movement results from patches coalescing diffusely than from the 

same number of patches coalescing pairwise. Thus, for example, if four patches of n individuals 

are involved in pairwise coalescence, the total amount of movement is 4n/2 (each coalescent 

event on average moves half the individuals in each patch).  However, if four patches of n 

individuals are involved in diffuse coalescence, then the probability of any individual returning 

to its patch of origin is 0.25 and total movement is 4n*(1-0.25). Generalizing, in p patches of size 

n, movement by pairwise coalescence is proportional to pn/2, while movement by diffuse 

coalescence is pn(1-(1/p)); as the number of patches involved in coalescence increases, there will 

be proportionately more net movement if the coalescence is diffuse than if it is pairwise (see Fig.  

Supplementary material for an explanatory diagram). Because diffuse coalescence moves more 

individuals than pairwise coalescence, for any level of diffuse coalesence involving a specific 

number of patches, we instantiated that event proportionately less frequently. For example, 

coalescence of 4 patches of size n moves 3n individuals, so we instantiated diffuse coalescence 

three time less frequently than pairwise coalesence (i.e. with probability m/3n).  

Differential reproductive output: We also briefly investigated if the difference between 

coalesence and dispersal would change in a simple non-neutral case, namely when there was a 

differential advantage of one species over another among genotypes). During the Moran birth 

death process, we instantiated one type to have an advantage, s, by adjusting the probability that 

it would replace the individual that dies to: (1+s)fi /((1+s)fi+(1-fi)), where fi is the frequency of 

the advantageous type in patch i. 

Fisher-Wright model 
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We used the Fisher-Wright model to instantiate dispersal and coalescence as a deterministic 

process, so that differences in stochastic implementation of the two movement types would not 

be a confounding factor. To do this, for any metacommunity size, we chose patch sizes that made 

it possible to equate dispersal and coalescence in terms of the number of individuals moved per 

generation. As a numerical example, if the metacommunity consists of N=128individuals,  and 

the number of patches is p= 16 then it is possible to move 8 individuals per generation (m=8/128) 

by either one coalescence event (in which half the individuals are exchanged between two 

patches) or by four dispersal events involving direct exchange of individuals among eight 

patches (without replacement). However, such equivalency, is only possible for some patch 

structures. 

Birth-death: In this model, at each time interval, all individuals die and are replaced by the same 

number of individuals sampled at the same frequency as those present in the previous generation 

(Wright 1943), as if progeny were produced clonally. Individuals therefore have non-overlapping 

generations, and each time interval is a generation. 

Dispersal: If as above, m is the per individual probability of movement in the metacommunity, 

m*N individuals move per time step. Single individuals were identified in this number of patches 

without replacement, the patches were paired, and the individuals exchanged. 

Pairwise coalescence: Dispersal of m*N individuals per generation is equivalent to C =m*N/n 

coalescent events. If C>p=2, 2C patches were chosen without replacement, paired, and exactly 

half the individuals within each patch (chosen at random with regard to type) were assigned back 

to their two source patches. 

Diffuse coalescence: To compare the effects of diffuse vs. pairwise coalescence, we used the 

following equivalency: net movement is the same when p patches are involved in pairwise 

coalescence and when (p/2) +1 patches are involved in diffuse coalescence (see derivation above, 

for Moran model).   

General implementation 

We used computer simulation but confirmed components of our models by testing 

agreement with existing theory of fixation rates in subdivided populations (Kimura and Ohta 

1968). All simulations were started with equal expected numbers of the two species in each patch 

(i.e. chosen with a 0.5 binomial expectation). Throughout, we present the results for N=128, and 

p=2, 4, 8, 16, 32 and 64; these values resulted in reasonable run-times and permitted modeling 
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equivalent levels of movement by dispersal and coalescence; other values of N, p, and n always 

gave qualitatively similar results. All programs used R version 3.5 and the default random 

number generator internal to the functions ‘sample’, ‘runif’, and ‘rbinom’.  

 

Results 

 When coalescence is pairwise, the time to monodominance (fixation) for any given rate 

of movement was longer when the patches were connected by coalescence than when they were 

connected by dispersal. This was seen under both the Moran and the Fisher Wright birth-death 

processes (Figs 1). The results were qualitatively same if the median of the time to dominance 

was considered (see Appendix S1 in Supporting Information, Table S1.1). In both models, the 

mean time to coalescence with no subdivision was as expected theoretically (Supplementary 

material B Text 2). In the Fisher-Wright model with deterministic movement, the time to 

monodominance at the highest level of community subdivision, i.e. p=64 and n=2, was the same 

for dispersal and coalescence (Fig. 2). This was because at n=2, our implementations of dispersal 

and coalescence are identical (see Appendix S2.1 in Supporting Information). Assigning 

individuals randomly to patches after coalescence rather than deterministically made little 

difference to the overall pattern (compare Fig. 2 and Fig. S1.1 in Appendix S1 in Supporting 

Information).  

 As expected, time to monodominance was always greater when there was more patch 

sub-division (numbers in each patch were smaller and random effects greater) and when the rates 

of movement among patches were lower (local chance divergence was greater among patches). 

Also as expected, because generations are not overlapping, the Moran model needed more time 

steps than the Fisher-Wright model to achieve monodominance.  

 When coalescence was diffuse, the time to monodominance was longer than when it was 

pairwise (Fig. 3). It is important to emphasize that these processes were standardized for total 

amount of movement, and not total number of patches involved. If the same number of patches 

are involved, then coalescing these diffusely rather than pairwise results in more effective 

movement and therefore shorter times to monodominance especially at high movement rates 

(Fig. S1.2 in Appendix S1 in Supporting Information). 

 The general result that the time to monodominance is longer under coalescence was 

unchanged by the addition of differences in reproductive rates of the two species (Fig 4a).  As 
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expected, time to monodominance of the favored species was shorter as its reproductive 

advantage increased, and not surprisingly the movement mode did not change the probability that 

the fitter type predominated (Fig. 4b) because movement was independent of the birth-death 

process.         

Discussion  

 Our results show that the neutral expectations of metacommunity subdivision on species 

abundance are different depending on whether the component communities are connected by 

dispersal of single individuals or by coalescence of whole communities, even when the total 

number of individuals moving by these routes is the same. Where coalesence is by fusion and 

separation of patches, the time to monodominance is longer, implying that if there were only 

neutral forces involved, the transient state where there is species diversity would be maintained 

for a longer time under coalescence than under dispersal. By implementing this process using the 

Fisher-Wright model with deterministic movement, we ensured that the results were due to the 

movement modes, and not to differences in the way stochasticity was implemented in the code 

used to simulate the two movement types.  

 The reason for the greater time to monodominance with coalescence is not obvious, and 

we undertook this study because we could not ourselves intuitively decide which outcome to 

expect. However, it likely that coalescence averages the differences among patches diverging by 

stochastic birth-death processes more effectively than dispersal. For monodominance at the 

metacommunity level, all patches must eventually end up with the same species. Two opposing 

forces determine this. First, monodominance occurs faster if all patches (or the average of those 

patches) are at starting frequencies greater or less than 0.5. In our simulations, all communities 

were started at an average frequency of 0.5 of the two species, so this was not a factor. Secondly, 

and somewhat counterintuitively, monodominance is more likely if the initial frequencies among 

the patches are different. For a species starting at frequency p, the time to reach monodominance 

is given by a function of the following form (Kimura & Ohta 1969): 

     - ((1-p)/p) log(1-p) 

In a metacommunity with just two patches with initial frequencies, p1 and p2, it can be shown 

that the average time to monodominance of a particular species is longer if the starting 

frequencies are the same (p1 = p2 = p̅ ) than if they are different ( p1 ≠ p2, and ( p1 + p2)/2= p̅ ) 

(Fig. S1.3 in Appendix S1 in Supporting Information). Dispersal events would create small 
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perturbations from existing frequencies, but pairwise coalescence events would equalize 

frequencies in separate patches that have diverged due to demographic stochasticity. This is 

consistent with the difference between time to monodominance for coalescence and for dispersal 

being greater when overall movement rates are lower (Fig. 1, 2).  

 It is also consistent with the times to monodominance being longer for diffuse 

coalescence. Diffuse movement is expected to drive frequencies in patches more towards the 

global average than pairwise coalescence, hence reduce the variance among patches, and 

correspondingly lead to longer times to monodominance. Our finding that diffuse coalescence 

leads to longer times to monodominance than pairwise carries the important qualification that 

this is true only if net movement by the two processes in the metacommunity is held the same. If 

different levels of coalescence are expressed simply as number of patches involved, then the 

more patches are involved the faster will be the time to monodominance because net movement 

rate is also greater: in the limit, if all patches coalesce in a highly subdivided community, it 

essentially becomes one well-mixed community. 

 In ecological models of stochastic processes, the Moran model has been most commonly 

used, whereas in genetic models the Fisher-Wright model has been preferred (Kimura & Ohta 

1971). However, stochastic processes represented by both models are analogous, except in the 

Moran model individuals are effectively perennial, generations overlap, and the alternative states 

are usually conceptualized as representing species instead of alleles (Blythe & McKane 2007). 

When only dispersal (and not coalescence) events are invoked, as is usually done in models of 

community or population subdivision, the results for the two types of model are similar and 

reconcilable by rescaling generation time under the Moran model by a factor of N/2 relative to 

the Fisher-Wright model (Blythe & McKane 2007). It is therefore not surprising that the 

outcomes from the two types of model with regard to coalescence are also qualitatively similar. 

Unlike in most studies (but see Parra-Rojas & McKane 2018), we implemented the Moran and 

Fisher-Wright birth and death processes separately from the movement events, and this enabled 

us to confirm that the greater time to monodominance was due to the “batch” nature of the 

movement rather than because of differences in stochasticity.  

 The goal of the present study has been to investigate neutral processes, rather than the 

outcome of differential fitness of the components. Nevertheless, using a simple modification of 

the Moran process, to impose, we showed that simple differences in reproductive rates of the two 
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species did not change the relative effects of coalescence vs. dispersal. However, it would be 

intriguing to explore more interesting and complex forms of selection, as coalescence transfers 

groups of individuals, and processes involving group interactions would likely differ between 

coalescence and dispersal. Such ‘group interactions’ might be processes involving altruism or 

shared ‘public goods’ (Archetti & Scheuring 2010), or positive density-dependent effects such as 

‘quorum sensing’ (Perez-Velazquez et al. 2016). Coalescence may also affect interactants that 

show ‘community cohesion’ without any form of altruism (Tikhonov 2016). A second additional 

feature of coalescence that we haven’t explored is that coalescence merges both abiotic and 

biotic aspects of the ‘patches’, and not necessarily to the same degree Rillig et al. 2016). It would 

be of interest to assess how the coalescence of, say, resource pools in patches with different 

species composition might affect species coexistence in a metacommunity.   

  The model presented here is heuristic and was not intended to apply to any specific 

system in nature. Our models were simplified, in that they assumed constant and equal patch-

structure and uniform patterns of movement. Moreover, in any system with spatial sub-

structuring, there is also likely to be extinction and recolonization of entire patches (Leibold & 

Loeuille 2015; Fukumori et al. 2015). Colonization and extinction can also be a major factor 

determining genetic structure of populations (Wade & McCauley 1988). Our results present an 

additional scenario, and therefore reinforce the need for caution in presuming any particular 

movement structure when interpreting data on species diversity (or on genetic differentiation) in 

subdivided habitats. The rapid evolution of the metacommunity concept over the last two 

decades and its entry into mainstream ecology (Hubbell 2001; Rosindell et al. 2011; Mihaljevic 

2012; Leibold et al. 2014) reflects awareness that adding reality in ecological theory results in 

more accurate assessment of the forces determining species diversity (Matthiessen & Hillebrand 

2006; Venail et al. 2008). In terrestrial systems, where ecological studies have been largely 

focused on ‘large’ organisms, mainly plants and animals, a theory based more on the dispersal of 

individuals rather than whole communities is clearly appropriate, but in microbial systems 

coalescence is likely to be an important additional element of realism.  

 There has been substantial advance in recent years in the development of analytical 

approaches to understanding stochastic processes especially in subdivided populations 

(Constable & McKane 2014, 2018; Parras-Rojas & McKane 2018) and we hope that our results 

will stimulate extended analytical efforts in the area of community coalescence. Microbial 
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communities have the advantage over communities of macro-organisms in that it may be feasible 

to manipulate the frequency of different kinds of movement events experimentally and to 

examine their consequences in real organisms (Jessup et al. 2005; Fukumori et al. 2015). 

Translating these ideas to better understanding the diversity of natural microbial systems, where 

metacommunity dynamics is likely to be highly variable, is an important challenge.  
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Figure Legends 

Fig. 1. Time to monodominance in a metacommunity of two species at different levels of 

subdivision (number of patches) when movement among patches is either by individual dispersal 

(dotted lines and open dots) or by pairwise coalescence of patches (solid lines and dots). (a)  

Moran model. Individuals moving per time step: red=1, blue=4, black=16. (b)  Fisher-Wright 

model. Individuals moving per time step: blue=4, brown=8, black=16. The initial 

metacommunity consisted of two species each with 64 individuals. In the Fisher-Wright model, 

the absent points are combinations of movement and subdivision where there was less than one 

coalescence event per time step. Means are based on 1000 runs, with points being 5 independent 

runs of 200. Asterisk in lower left shows the theoretical expectation for no subdivision. 

 

Fig. 2. Time to monodominance in a metacommunity of two species at different levels of 

subdivision (number of patches), with coalescence that is either pairwise (dashed lines and solid 

dots) or diffuse (dotted lines and open dots). (a) Moran model. Diffuse coalescence involved 8 

patches; to equate net movement by the two types of coalescence, diffuse coalescence occurred 

at a lower frequency than pairwise coalescence. (b) Fisher-Wright model. To equate net 

movement by the two types of coalescence, diffuse coalescence involved fewer patches than 

pairwise coalescence (see text). In both models, individuals moving per time step: blue=4, 

brown=8, black=16. The initial metacommunity consisted of two species each with 64 

individuals. In the Fisher-Wright model, the absent points are combinations of movement and 

subdivision where there was less than one coalescence event per time step. Means are based on 

1000 runs, with points being 5 independent runs of 200.  

  

Fig. 3. (a) Time to monodominance (log10) for a species with different levels of selective 

advantage, when there is either dispersal (dotted lines and open dots) or pairwise coalescence 

(solid lines and dots). Patch number: green= 8, brown =16. (b) Probability of favored type 

achieving dominance at different levels of community subdivision (number of patches) when 

there is either dispersal (dotted lines and open dots) or pairwise coalescence (solid lines and 

dots).  Selective advantage: black =0.05, blue=0.01, red=0.001. Based on the Moran model of a 

metacommunity of two species each with 64 individuals. Means are for 5 independent subsets of 

200 replicates each.   
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Fig 1 (a) 
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Fig 2 (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 2 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



19 
 

Fig. 3 (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 3 (b) 
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Appendix S1. Tables and Figures 

 

 Table S1. 1. Mean and median times to monodominance under a Moran neutral model with 

dispersal or with paired coalescence. N=128 and total migrants=8 for three levels of patch 

subdivision, and values are means for 250 replicate runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number of 

patches 

Mean (back transformed 

from mean of log time) 

Median 

 Dispersal Coalescence Dispersal Coalescence 

8 22,284.4 31,260.8 

 

23,107.5 35,578.5 

16 42,169.7 67,920.4 

 

41,514.0 69,452.0 

32 108,143.4 169,824.4 

 

105,985.5 175,049.5 
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Fig. S1.1. Mean time to monodominance of a species in a metacommunity under the Fisher-

Wright model with deterministic dispersal (dotted lines and open dots) and pairwise coalescence 

but random assignment of individuals to patches following coalescence. Each point is based on 

200 independent runs; standard errors are ca. 2x width of the symbols. Three rates of net 

movement per time step per metacommunity are shown (red=1 individual; blue=4; black=16). 

where at each time step all individuals die and are replaced at random from the same patch. 

Points are absent for combinations of movement and subdivision where dispersal could not be 

exactly equated with pairwise coalescence within one time-step.  
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Fig. S1.2. Mean time to monodominance of a species in a metacommunity with either pairwise 

coalescence (dashed lines and open dots) or diffuse coalescence (dotted lines and solid dots) at 

different levels of community subdivision (number of patches). In this simulation, the same 

number of patches were involved in diffuse coalescence as in pairwise coalescence (levels of 

movement were greater with diffuse coalescence). Based on the Fisher-Wright model (see text) 

and random assignment following coalescence. Means are for 5 independent subsets of 200 

replicates each. Four rates of movement for paired coalescence are shown (red=2 individuals per 

metacommunity of N=128; blue=4 brown=8; black=16). Points are absent for combinations of 

movement and subdivision where there was less than one coalescence event per time step.  

 

Diffuse coalescence (measured by number of patches coalescing) can now result in shorter times 

to monodominance, especially at high movement rates and intermediate levels of subdivision.  
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Fig. S1.3. Relationship between initial frequency of a species/allele (A) and time to fixation of 

that species in a community/population. Based on the Moran model (Souza et al. 2018). The 

Wright-Fisher model gives the same shape curve (Kimura and Ohta 1969, Fig. 1). The 

intersection of the central vertical line, and the chord of joining the lines on either side shows 

show that the mean time to fixation of two patches differing in their initial frequencies is less 

than the time to fixation of two patches with the average of those frequencies.  
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APPENDIX S2. Explanation of models 

 

S2.1. Moran and Fisher-Wright models when n=2. 

 

Note – identities (superscripts) are source patches, not individual state 

 

Dispersal algorithm when n=2, probability = m per time unit 

‘Fuse’ individuals from two patches A1 and A2, assign one back to each patch at random. 

The outcome is either A1 | A2 (no dispersals), A2 | A1 (two dispersals); i.e. average = one 

dispersal/movement. 

 

Coalescence algorithm when n=2, probability =m/2 per time unit 

‘Fuse’ two patches A1 A1 and A2 A2 and assign two back to each patche at random. 

Possible equally likely outcomes are: 

                       A1 A1 | A2 A2  (no moves) 

  A1A2 | A2 A1 (2 moves) 

  A2A1 | A1 A2 (2 moves) 

  A2A2 | A1 A1 (4 moves) 

i.e. total of 2 moves every coalescent event but occurs m/n or half as often as disperal when n=2.   

  

If they happen simultaneously (as in the Fisher Wright model) and deterministically then 

coalescence achieves is the same as dispersal, i.e. dispersal and coalescence produce the same 

number of net moves simultaneously. However, in the Moran model the movement events 

happen sequentially and therefore the periods of ‘drift’ are longer between coalescence events 

than between dispersal events.  

 To confirm this, we predicted that if dispersal/coalescence is made deterministic in the 

Moran model, there should also be longer times to monodominance, and this was the case (see 

Table below): 

Time to monodominance when N =128 and p=64 (n=2), with the Moran model when dispersal 

occurs every generation and coalescence occurs every other generation. Two right hand columns 

show times to monodominance when dispersal and coalescence are applied probabilistically in 

the Moran model. Standard errors on means are ca. 0.02-0.03 for 250 replicate runs. 

 

  

number of 

individuals 

moving 

mean log time to 

monodominance 

 

median time to 

monodominance 

 

mean log time to 

monodominance in  

 movement deterministic movement stochastic 

 Dispersal Coalescence Dispersal Coalescence Dispersal Coalescence 

1     6.043   6.233 
 

1,078,645.0 1,609,636.0 6.044 6.205 

8   5.426 
 

   5.594 
 

304,594.0 410,254.5 5.473 5.633 

16   4.893 
 

5.076 85,441.5 121,501.0 4.905 5.087 
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S2.2. Theoretical fixation times  

 

(from Kimura and Ohta 1969; and 

https://math.la.asu.edu/~jtaylor/teaching/Spring2015/APM504/lectures/Moran.pd  

Theorem 3 jetaylor6@asu.edu.) 

 

Assume N haploid individuals, and starting frequency of the alleles are p and 1-p. 

Under the Fisher-Wright model the time to fixation is  

Either allele: -2N{p log(p) + (1 -p) log(1 - p)} 

One allele:    -2N{(1 - p)/p) log(1-p)} 

For Moran, these Fisher-Wright times are multiplied by N/2 to get predicted times. 

 

Plot of 10000 runs of time to fixation (either allele) in a single population of N=128, Moran 

model. 

Observed  mean t = 11269.0   

Expected  mean t = 11356.5    

Mean of log10 t = 3.94936; sterr = 0.00301 
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Plot of 10000 runs of time to fixation (either allele) in a single population of N=128, Fisher-

Wright model. 

 

 

Observed  mean t = 174.98   

Expected  mean t = 177.46    

Mean of log10 t  = 2.13882; sterr=0.00303 

 

This simulation shows that the log of the mean time to fixation agrees with the theoretical 

prediction for mean time to fixation. 
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S2.3. Number of coalescent events that give equivalent levels of movement as dispersal, for 

different levels of patch subdivision, illustrated for a community of N=128.  

 

m = movement rate, p =patches, n = individuals within patches 

 

 m 1/128 2/128 4/128 8/128 16/128 32/128 

movers N*p 1 2 4 8 16 32 

p n     

2 64       

  4 32      1 

8 16     1 2 

16 8    1 2 4 

32 4   1 2 4 8 

64 2  1 2 4 8 16 
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APPENDIX S3: R code used to instantiate the models 

 

Note: functions implemented in the code are indicated by names in upper case letters, and 

the code for them is at the beginning of the code. 

 

Moran model  

 Compare dispersal with pairwise coalescence 

 Compare pairwise with diffuse coalescence 

 

Fisher-Wright model 

 Compare dispersal with pairwise coalescence 

 Compare pairwise with diffuse coalescence 

 

Moran model: Compare dispersal with pairwise coalescence 
#############################################################################################
##### 
#import packages 
library(foreach) 
library(doParallel) 
cl=makeCluster(7) 
registerDoParallel(cl) 
#######################starting conditions 
MO.DISP.PW=function(runs,p,n,m,d,tmax) 
 { 
 meta.d=matrix(rbinom(p*n,1,0.5),n,p,byrow=F) #generate metapopulation; rows are individuals within pops, 
columns are pop 
 for (t in (1:tmax)) 
  { 
  #moran birth death 
  if (runif(1)<d) 
   { 
   pid=sample(c(1:p),1,replace=F)   # sample 1 individuals from pop 
   nid=sample(c(1:n),1,replace=F)   # sample 1 individual from within pop 
   freq=sum(meta.d[,pid])/n         # calculate frequency in chosen population 
   meta.d[nid,pid]=rbinom(1,1,freq) # replace that individual with one chosen from same pop at 
random 
   } 
  #dispersal, instantiated as coalescence with 1; each coalescent event disperses ON AVERAGE 1 
individual (half diperse none, half disperse 2) 
  if (runif(1)<m) #do if there is a movement event 
   { 
   pids=sample(c(1:p),2,replace=F) # sample from different populations in the metapop without 
replacement 
   nids=sample(c(1:n),2,replace=T) # sample individuals from these populations 
   n1=nids[1];p1=pids[1] 
   n2=nids[2];p2=pids[2] 
   coalpop=c(meta.d[n1,p1],meta.d[n2,p2]) # fuse two individuals   
   coal=sample(coalpop)                   # 
randomise individuals in fused pops 
   meta.d[n1,p1]=coal[1]                  # separate them again  
   meta.d[n2,p2]=coal[2] 
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   } 
  sum.d=sum(meta.d) # find total number of 1's in population 
  if (sum.d==0|sum.d==p*n) #if number of 1's are zero or fixed, break 
   {break} 
  }  #end t loop 
  hold=c(t,sum.d/N)  
  return(hold) 
 }#end of function MO.DISP.PW 
#######################starting conditions 
MO.COAL.PW=function(runs,p,n,m,d,tmax) 
 { 
 meta.c=matrix(rbinom(p*n,1,0.5),n,p,byrow=F) #starting metapopulation same in dispersal and coalescence 
 for (t in (1:tmax)) 
  { 
  c=m/n 
  #moran birth death 
  if (runif(1)<d) 
   { 
   pid=sample(c(1:p),1,replace=F) # sample 1 individuals from metapop, sample pop 
   nid=sample(c(1:n),1,replace=T) # sample individual 
   freq=sum(meta.c[,pid])/n 
   meta.c[nid,pid]=rbinom(1,1,freq) #replace that individual with random from pop 
   } 
   #coalescence pairwise 
  if (runif(1)<c) 
   { 
   pops=sample(c(1:p),2,replace=F) 
   p1=pops[1];p2=pops[2] 
   coalpop=c(meta.c[,p1],meta.c[,p2]) # fuse pops   
   coal=sample(coalpop)           # 
randomise individuals in fused pops 
   meta.c[,p1]=coal[1:n]               #separate them again - first pop 
   meta.c[,p2]=coal[(n+1):(n+n)] #second pop 
   }#end condition to do anything 
  sum.c=sum(meta.c)  
  if (sum.c==0|sum.c==N) #test for fixation 
   {  
   break 
   }  
  }  #end t loop 
  hold=c(t,sum.c/N) 
  return(hold) 
 } #end of function MO.COAL.PW 
####################################################################################### 
SUMSTATS=function(hold,tmax) # summarize over reps 
 { 
 pastmax=subset(hold,hold[,1]>=tmax) #array of data that did not go to monodominance 
 repspastmax=length(pastmax[,1]) 
 fraction1s=sum(hold[,2])/length(hold[,2]) 
 mediant=(median(hold[,1], na.rm=T))     #calculate median 
 q1=(quantile(hold[,1],c(0.25),na.rm=T)) #calculate quantiles 
 q3=(quantile(hold[,1],c(0.75),na.rm=T)) 
 meanlt=sum(log10(hold[,1]))/length(hold[,1])         #calculate mean of log times to fixation 
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 stdevlt=sqrt(var(log10(hold[,1])))       #calculate stdev of log times to fixation 
 sterrlt=stdevlt/sqrt(length(hold[,1]))                #calculate stderr of log times to fixation 
 out=c(meanlt,sterrlt,mediant,q1[[1]],q3[[1]],length(hold[,1]),repspastmax,fraction1s) 
 return(out) 
 } #end SUMSTATS 
#############################################################################################
####     
#end subroutines 
#############################################################################################
#### 
overall.start=Sys.time() 
#############################################################################################
#### 
N=128 
p.step=c(2,4,8,16,32,64)#  
m.step=c(4/128,8/128,16/128)# 1/128, 
d.step=c(1) 
#reps=250 
tmax=100000000  
superreps=5  
#################################################################################### 
for (i in 1:superreps) 
 { 
 hold.all=matrix(NA,2*length(p.step)*length(m.step)*length(d.step),12,byrow=T) #holds final summary data 
             
 # 2 times to accommodate dispesal and coalescence 
             
 # Type N p d m meanlt sterrlt meanmedt lower-quartile upper-quartile reps repspastmax fraction-1's 
 h=1 #counter for rows in the matrix hold 
 
#DISPERSAL (coalescence with 1 individual) 
for (p in p.step) 
 { 
 n=N/p #get correspoonding pop size given p pops and toal size N 
 for(m in m.step) 
  { 
  for(d in d.step) 
   { 
  
 ######################################################################################
############### 
   hold <- foreach(runs=rep(1,20 ), .combine='rbind') %dopar% MO.DISP.PW(runs,p,n,m,d,tmax) 
  
 ######################################################################################
################ 
   rep.output=SUMSTATS(hold,tmax) 
   print(c(i,"Dispersal",p,d,m))   #keep track of how long simulation has run 
   type=1 # use number 1 for dispersal 
   hold.all[h,]=c(type,p,d,m,rep.output) 
   h=h+1 #save 
   } # end of d loop 
  } # end of m loop   
 } # end of p loop 
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#COALESCENCE 
for (p in p.step) 
 { 
 n=N/p #get correspoonding pop size given p pops and toal size N 
 for(m in m.step) 
  { 
  #c=m/n # coalescence as function of movement (each coalescent event gives n dispersals) 
  for(d in d.step) 
   { 
 
#############################################################################################
######## 
   hold <- foreach(runs=rep(1,20 ), .combine='rbind') %dopar% MO.COAL.PW(runs,p,n,m,d,tmax) 
  
 ######################################################################################
################ 
   print(c(i,"Coalescence",p,d,m))   
   rep.output=SUMSTATS(hold,tmax) 
   type=2 # use number not words so output is data.frame  
   hold.all[h,]=c(type,p,d,m,rep.output) 
   h=h+1 #save 
   } # end of d loop 
  } # end of m loop   
 } # end of p loop 
 r.holdall=nrow(hold.all) #get number of rows in hold.all 
 name=paste("H",i,sep="") #create super rep names H1, H2, etc (Hi) 
 assign(name,cbind(matrix(i,r.holdall,1),hold.all)) #assign names to superrep matrices 
 } # end of superreps loop 
super.hold.all= rbind(H1,H2,H3,H4,H5)  #   #MANUALLY ADJUST SUPERREPS if not equal 5 
#################################################### 
overall.time=Sys.time() - overall.start 
print(c(overall.time))      
##################################################    p n sz lam   mov     mean        err  median       q1       
q3 runs pastmax X1.s 
#############################################################################################
################################### 
dat1D=super.hold.all[super.hold.all[,5]==m.step[1] & super.hold.all[,2]==1,] 
dat1Dm=aggregate(dat1D[,6], by=list(dat1D[,3]),FUN=mean)#,na.action = na.omit 
dat1Dse=sqrt(aggregate(dat1D[,6], by=list(dat1D[,3]),FUN=var))/superreps#,na.action = na.omit 
dat1C=super.hold.all[super.hold.all[,5]==m.step[1] & super.hold.all[,2]==2,] 
dat1Cm=aggregate(dat1C[,6], by=list(dat1C[,3]),FUN=mean)#,na.action = na.omit 
dat1Cse=sqrt(aggregate(dat1C[,6], by=list(dat1C[,3]),FUN=var))/superreps #, na.action = na.omit 
 
dat2D=super.hold.all[super.hold.all[,5]==m.step[2] & super.hold.all[,2]==1,]  
dat2Dm=aggregate(dat2D[,6], by=list(dat2D[,3]),FUN=mean)  #,na.action = na.omit 
dat2Dse=sqrt(aggregate(dat2D[,6], by=list(dat2D[,3]),FUN=var))/superreps #,na.action = na.omit 
dat2C=super.hold.all[super.hold.all[,5]==m.step[2] & super.hold.all[,2]==2,] 
dat2Cm=aggregate(dat2C[,6], by=list(dat2C[,3]),FUN=mean)  #,na.action = na.omit  
dat2Cse=sqrt(aggregate(dat2C[,6], by=list(dat2C[,3]),FUN=var))/superreps  #,na.action = na.omit 
 
dat3D=super.hold.all[super.hold.all[,5]==m.step[3] & super.hold.all[,2]==1,] 
dat3Dm=aggregate(dat3D[,6], by=list(dat3D[,3]),FUN=mean) #,na.action = na.omit 
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dat3Dse=sqrt(aggregate(dat3D[,6], by=list(dat3D[,3]),FUN=var))/superreps  # ,na.action = na.omit 
dat3C=super.hold.all[super.hold.all[,5]==m.step[3] & super.hold.all[,2]==2,] 
dat3Cm=aggregate(dat3C[,6], by=list(dat3C[,3]),FUN=mean)  #,na.action = na.omit 
dat3Cse=sqrt(aggregate(dat3C[,6], by=list(dat3C[,3]),FUN=var))/superreps  #,na.action = na.omit 
 
win.graph() 
min=min(super.hold.all[,6],na.rm=T) 
max=max(super.hold.all[,6],na.rm=T) 
plot(c(0,64),c(min,max),type='n',xlab="number of patches",ylab="mean time to fixation (log10)",cex.lab=1.5, 
 main="Moran") 
 
lines(c(dat1Dm[,1]),c(dat1Dm[,2]),lty="dashed",col="red")  
#lines(log10(c(dat1Dm[,1])),c(dat1Dm[,2]),lty="dashed",col="red")  
points(dat1D[,3]-0.5,dat1D[,6],col="red",cex=1) 
lines(dat1Cm[,1],dat1Cm[,2],col="red")   
#lines(log10(dat1Cm[,1]),dat1Cm[,2],col="red")  
points(dat1C[,3]+0.5,dat1C[,6],col="red",cex=1, pch=20) 
 
lines(dat2Dm[,1],dat2Dm[,2],lty="dashed",col="blue")  
points(dat2D[,3]-0.5,dat2D[,6],col="blue",cex=0.75) 
lines(dat2Cm[,1],dat2Cm[,2],col="blue")  
points(dat2C[,3]+0.5,dat2C[,6],col="blue",cex=1,pch=20) 
  
lines(dat3Dm[,1],dat3Dm[,2],lty="dashed",col="black")  
points(dat3D[,3]-0.5,dat3D[,6],col="black",cex=0.75) 
lines(dat3Cm[,1],dat3Cm[,2],col="black")  
points(dat3C[,3]+0.5,dat3C[,6],col="black",cex=1,pch=20) 
 
points(1,3.949,col="black",cex=1, pch=8) #asterisk=8, plus=3, x=4 
 
#setwd("C:/Users/Janis/Desktop/Coalescence 2019/") 
#write.csv(super.hold.all, file="Data Fig 1a.csv") 

 

Fisher-Wright model: Compare dispersal with pairwise coalescence 
 
#############################################################################################
##### 
#import packages 
library(foreach) 
library(doParallel) 
cl=makeCluster(7) 
registerDoParallel(cl) 
#######################starting conditions 
FW.DISP.DET=function(reps,p,n,m,tmax) 
 { 
 meta.d=matrix(rbinom(p*n,1,0.5),n,p,byrow=F) #generate metapopulation; rows are individuals, columns are 
pops 
 hold=rep(NA,2) 
 for (t in (1:tmax)) 
 { 
 #FISHER_WRIGHT BIRTHS-DEATHS 
  for (j in (1:p))                  #for each population 
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   { 
   freq=sum(meta.d[,j])/n         # calculate frequency in population 
   meta.d[,j]=rbinom(n,1,freq)    # replace that population with random number of two types based on 
previous frequency   
   } 
 #DETERMINISTIC DISPERSAL 
  rand.pids=sample(1:p) #randomize populations prior to dispersal  
  meta.d=meta.d[,rand.pids] 
  d.pops=N*m # different pops involved in dispersal 
  if (d.pops>p) #cannot do if to few pops 
   { 
    sum.d=NA; t=NA # store as NA values 
    break  
   } 
  if (d.pops<=p) 
   { 
   for (i in (1:(d.pops/2))) #disperse between pairs with no replacement 
   { 
   n1=sample(c(1:n),1) #identify individuals in 2 different pops  
   n2=sample(c(1:n),1)  
   temp=meta.d[n1,c((2*i)-1)] # sample an individual from one populations - pops randomized 
previously 
   meta.d[n1,c((2*i)-1)]=meta.d[n2,c(2*i)] # switch with an individual from a different populations 
   meta.d[n2,c(2*i)]=temp 
    } # e.g. if d.pop=8, this has effected switches between 4 pairs of pops, i.e. N*m=8 
   } 
   sum.d=sum(meta.d) # find total number of 1's in population 
   if (sum.d==0|sum.d==p*n) #if number of 1's are zero or fixed, break 
   { 
   hold=c(t, sum.d/N) 
   break 
   } 
 }  #end t loop 
   
 return(hold) 
 } # end function MO.DISP.DET 
#######################starting conditions 
FW.COAL.PAIR=function(reps,p,n,m,tmax) 
 { 
 meta.c=matrix(rbinom(p*n,1,0.5),n,p,byrow=F) #starting metapopulation same in dispersal and coalescence 
 hold=rep(NA,2) 
 for (t in (1:tmax)) 
 { 
 #FISHER-WRIGHT BIRTH-DEATH 
 for (j in (1:p))                #for each population 
   { 
   freq=sum(meta.c[,j])/n         # calculate frequency in population 
   meta.c[,j]=rbinom(n,1,freq)    # replace that population with random number of two types based on 
frequency in previous 
   } 
  #COALESCENCE PAIRWISE 
  rand.pids=sample(1:p)#randomize populations prior to coalescence to simplify selection of pops without 
replacement 
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  meta.c=meta.c[,rand.pids] 
  cevents=N*m/n # number of coalescence events  
  #e.g. with 1 cevent diffuse coalescencw fuses 2 pops, with 2 fuses 4 pops 
  #glob.freq=sum(meta.c)/N 
  if (cevents<1) 
   { 
   sum.c=NA;t=NA 
   break  
   } 
  if (cevents>=1) 
  { 
  for (i in (1:cevents)) 
   { 
    
   pop1.half=meta.c[(1:(n/2)),c((2*i)-1)] # sample half from one different populations in the 
metapop without replacement 
   pop2.half=meta.c[(1:(n/2)),c(2*i)] #sample half from another population 
   temp=pop1.half 
   meta.c[(1:(n/2)),c((2*i)-1)]=meta.c[1:(n/2),c(2*i)]  
   meta.c[(1:(n/2)),c(2*i)]=temp 
   meta.c[,c((2*i)-1)]=sample(meta.c[,c((2*i)-1)]) # rerandomize so order is not maintained 
   meta.c[,c(2*i)]=sample(meta.c[,c(2*i)]) 
   } #end cevents 
  }#end if cevents  
  sum.c=sum(meta.c)  
  if (sum.c==0|sum.c==N) #test for fixation 
   { 
   hold=c(t,sum.c/N)  
   break 
   }  
  }  #end t loop 
  
 return(hold) 
} #end of function MO.COAL.DIF 
####################################################################################### 
SUMSTATS=function(hold,tmax) # summarize over reps 
 { 
 pastmax=subset(hold,hold[,1]>=tmax) #array of data that did not go to monodominance 
 repspastmax=length(pastmax[,1]) 
 fraction1s=sum(hold[,2])/length(hold[,2]) 
 mediant=(median(hold[,1], na.rm=T))     #calculate median 
 q1=(quantile(hold[,1],c(0.25),na.rm=T)) #calculate quantiles 
 q3=(quantile(hold[,1],c(0.75),na.rm=T)) 
 meanlt=sum(log10(hold[,1]))/length(hold[,1])  #calculate mean of log times to fixation 
 stdevlt=sqrt(var(log10(hold[,1])))            #calculate stdev of log times to fixation 
 sterrlt=stdevlt/sqrt(length(hold[,1]))        #calculate stderr of log times to fixation 
 out=c(meanlt,sterrlt,mediant,q1[[1]],q3[[1]],length(hold[,1]),repspastmax,fraction1s) 
 return(out) 
 } #end function SUMSTATS 
#############################################################################################
####     
#end subroutines 
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#############################################################################################
#### 
overall.start=Sys.time() 
N=128 
p.step=c(2,4,8,16,32,64)  
m.step=c(4/128,8/128,16/128)# 
#reps=1 #dummy variable, assign reps in foreach functions for disp and coal 
tmax=10000000 
superreps=5 # NB: to change, need also to adjust number of H's below 
#############################################################################################
### 
for (i in 1:superreps) 
 { 
 hold.all=matrix(NA,2*length(p.step)*length(m.step),11,byrow=T) #holds final summary data for disp and coal 
 h=1 #line increment for hold.all 
 #DISPERSAL (coalescence with 1 individual) 
 for (p in p.step) 
  { 
 n=N/p 
  for(m in m.step) 
   { 
   
#######################################################################################  
   hold <- foreach(reps=rep(1,200), .combine='rbind') %dopar% FW.DISP.DET(reps,p,n,m,tmax) 
  
 ######################################################################################
#  
   rep.output=SUMSTATS(hold,tmax)# subroutine to do summary stats 
   print(c(i,"Dispersal",p,m))   # keep track of how long simulation has run 
   type=1 # use number 1 for dispersal 
   hold.all[h,]=c(type,p,m,rep.output) 
   h=h+1 #save 
   } # end of m loop   
  } # end of p loop 
 
 #COALESCENCE 
 for (p in p.step) 
  { 
 n=N/p  
  for(m in m.step) 
   { 
   ##########################################################################################  
   hold <- foreach(reps=rep(1,200), .combine='rbind') %dopar% FW.COAL.PAIR(reps,p,n,m,tmax) 
   
##########################################################################################  
   rep.output=SUMSTATS(hold,tmax) # subroutine to do summary stats 
   print(c(i,"Coalescence",p,m))  
   type=2 # use number not words so output is data.frame  
   hold.all[h,]=c(type,p,m,rep.output)  
   h=h+1 #save 
   } # end of m loop   
  } # end of p loop 
 r.holdall=nrow(hold.all) #get number of rows in hold.all 
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 name=paste("H",i,sep="") #create super rep names H1, H2, etc (Hi) 
 assign(name,cbind(matrix(i,r.holdall,1),hold.all)) #assign names to superrep matrices 
 } # end of superreps loop 
super.hold.all= rbind(H1,H2,H3,H4,H5)  #   #MANUALLY ADJUST SUPERREPS if not equal 5 
#################################################### 
overall.time=Sys.time() - overall.start 
print(c(overall.time))      
##################################################    p n sz lam   mov     mean        err  median       q1       
q3 runs pastmax X1.s 
#############################################################################################
################################### 
dat1D=super.hold.all[super.hold.all[,4]==m.step[1] & super.hold.all[,2]==1,] 
dat1Dm=aggregate(dat1D[,5], by=list(dat1D[,3]),FUN=mean)#,na.action = na.omit 
dat1Dse=sqrt(aggregate(dat1D[,5], by=list(dat1D[,3]),FUN=var))/superreps#,na.action = na.omit 
dat1C=super.hold.all[super.hold.all[,4]==m.step[1] & super.hold.all[,2]==2,] 
dat1Cm=aggregate(dat1C[,5], by=list(dat1C[,3]),FUN=mean)#,na.action = na.omit 
dat1Cse=sqrt(aggregate(dat1C[,5], by=list(dat1C[,3]),FUN=var))/superreps #, na.action = na.omit 
 
dat2D=super.hold.all[super.hold.all[,4]==m.step[2] & super.hold.all[,2]==1,]  
dat2Dm=aggregate(dat2D[,5], by=list(dat2D[,3]),FUN=mean)  #,na.action = na.omit 
dat2Dse=sqrt(aggregate(dat2D[,5], by=list(dat2D[,3]),FUN=var))/superreps #,na.action = na.omit 
dat2C=super.hold.all[super.hold.all[,4]==m.step[2] & super.hold.all[,2]==2,] 
dat2Cm=aggregate(dat2C[,5], by=list(dat2C[,3]),FUN=mean)  #,na.action = na.omit  
dat2Cse=sqrt(aggregate(dat2C[,5], by=list(dat2C[,3]),FUN=var))/superreps  #,na.action = na.omit 
 
dat3D=super.hold.all[super.hold.all[,4]==m.step[3] & super.hold.all[,2]==1,] 
dat3Dm=aggregate(dat3D[,5], by=list(dat3D[,3]),FUN=mean) #,na.action = na.omit 
dat3Dse=sqrt(aggregate(dat3D[,5], by=list(dat3D[,3]),FUN=var))/superreps  # ,na.action = na.omit 
dat3C=super.hold.all[super.hold.all[,4]==m.step[3] & super.hold.all[,2]==2,] 
dat3Cm=aggregate(dat3C[,5], by=list(dat3C[,3]),FUN=mean)  #,na.action = na.omit 
dat3Cse=sqrt(aggregate(dat3C[,5], by=list(dat3C[,3]),FUN=var))/superreps  #,na.action = na.omit 
 
win.graph() 
min=2.1 #min(super.hold.all[,5],na.rm=T) 
max=max(super.hold.all[,5],na.rm=T) 
plot(c(0,64),c(min,max),type='n',xlab="number of patches",ylab="mean time to fixation (log10)",cex.lab=1.5) 
#,main="F-W Pairwise deterministic" 
 
lines(c(1,dat1Dm[,1]),c(2.14,dat1Dm[,2]),lty="dashed",col="blue")  
points(dat1D[,3]-0.5,dat1D[,5],col="blue",cex=1) 
lines(dat1Cm[,1],dat1Cm[,2],col="blue")  
points(dat1C[,3]+0.5,dat1C[,5],col="blue",cex=1, pch=20) 
 
lines(dat2Dm[,1],dat2Dm[,2],lty="dashed",col="brown")  
points(dat2D[,3]-0.5,dat2D[,5],col="brown",cex=0.75) 
lines(dat2Cm[,1],dat2Cm[,2],col="brown")  
points(dat2C[,3]+0.5,dat2C[,5],col="brown",cex=1,pch=20) 
  
lines(dat3Dm[,1],dat3Dm[,2],lty="dashed",col="black")  
points(dat3D[,3]-0.5,dat3D[,5],col="black",cex=0.75) 
lines(dat3Cm[,1],dat3Cm[,2],col="black")  
points(dat3C[,3]+0.5,dat3C[,5],col="black",cex=1,pch=20) 
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################## 
points(1,2.139,col="black",cex=1, pch=8) 
 
#setwd("C:/Users/Janis/Desktop/Coalescence 2019/") 
#write.csv(super.hold.all, file="Data Fig 1b.csv")   
 
 

Moran model: Compare pairwise with diffuse coalescence 
#############################################################################################
##### 
#import packages 
library(foreach) 
library(doParallel) 
cl=makeCluster(7) 
registerDoParallel(cl) 
#######################starting conditions 
MO.COAL.DIFF=function(runs,p,n,m,d,tmax) 
 { 
 meta.d=matrix(rbinom(p*n,1,0.5),n,p,byrow=F) #generate metapopulation; rows are individuals within pops, 
columns are pop 
 c.d=m/(n*7) #rate of diffuse coalescence 
 p.c=8 # number of pops invoivled in coalescence 
 for (t in (1:tmax)) 
  { 
  #moran birth death 
  #if (runif(1)<d) 
  # { 
   pid=sample(c(1:p),1,replace=F)   # sample 1 individuals from pop 
   nid=sample(c(1:n),1,replace=F)   # sample 1 individual from within pop 
   freq=sum(meta.d[,pid])/n         # calculate frequency in chosen population 
   meta.d[nid,pid]=rbinom(1,1,freq) # replace that individual with one chosen from same pop at 
random 
   #} 
    
   if (runif(1)<c.d) 
   { 
   rand.pids=sample(1:p)#randomize populations prior to coalescence to simplify selection of pops without 
replacement 
   meta.d=meta.d[,rand.pids] 
    # pops involved pairwise = 2*cevents; pops involved diffusely for same movemnt= 
cevents+1 
   select=meta.d[,1:p.c] # choose pops to coalesce - order previously randomized    
   vect=as.vector(select)      # turn into a 1-D array 
   randa=sample(vect) #randomize individuals in array 
   rematrix=matrix(randa,n,p.c,byrow=T)#return to same number of pops 
   for (i in 1:p.c) 
    { 
    meta.d[,i]=rematrix[,i] #return to same number of pops 
    } 
    #print(meta.d) 
   }#end if c.p events  
  sum.d=sum(meta.d) # find total number of 1's in population 
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  if (sum.d==0|sum.d==p*n) #if number of 1's are zero or fixed, break 
   {break} 
  }  #end t loop 
  hold=c(t,sum.d/N)  
  return(hold) 
 }#end of function MO.DISP.PW 
#######################starting conditions 
MO.COAL.PW=function(runs,p,n,m,d,tmax) 
 { 
 meta.c=matrix(rbinom(p*n,1,0.5),n,p,byrow=F) #starting metapopulation same in dispersal and coalescence 
 c=m/n #rate of pairwise coalescence  
 for (t in (1:tmax)) 
  { 
  #moran birth death 
   #if (runif(1)<d) 
   #{ 
   pid=sample(c(1:p),1,replace=F) # sample 1 individuals from metapop, sample pop 
   nid=sample(c(1:n),1,replace=T) # sample individual 
   freq=sum(meta.c[,pid])/n 
   meta.c[nid,pid]=rbinom(1,1,freq) #replace that individual with random from pop 
   #} 
    
   #coalescence pairwise 
    
   if (runif(1)<c) 
   { 
   rand.pids=sample(1:p)#randomize populations prior to coalescence to simplify selection 
of pops without replacement 
   meta.c=meta.c[,rand.pids] 
    
   pops=sample(c(1:p),2,replace=F) 
   p1=pops[1];p2=pops[2] 
   coalpop=c(meta.c[,p1],meta.c[,p2]) # fuse pops   
   coal=sample(coalpop)           # 
randomise individuals in fused pops 
   meta.c[,p1]=coal[1:n]               #separate them again - first pop 
   meta.c[,p2]=coal[(n+1):(n+n)] #second pop 
   }#end condition to do anything 
  sum.c=sum(meta.c)  
  if (sum.c==0|sum.c==N) #test for fixation 
   {  
   break 
   }  
  }  #end t loop 
  hold=c(t,sum.c/N) 
  return(hold) 
 } #end of function MO.COAL.PW 
####################################################################################### 
SUMSTATS=function(hold,tmax) # summarize over reps 
 { 
 pastmax=subset(hold,hold[,1]>=tmax) #array of data that did not go to monodominance 
 repspastmax=length(pastmax[,1]) 
 fraction1s=sum(hold[,2])/length(hold[,2]) 
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 mediant=(median(hold[,1], na.rm=T))     #calculate median 
 q1=(quantile(hold[,1],c(0.25),na.rm=T)) #calculate quantiles 
 q3=(quantile(hold[,1],c(0.75),na.rm=T)) 
 meanlt=sum(log10(hold[,1]))/length(hold[,1])         #calculate mean of log times to fixation 
 stdevlt=sqrt(var(log10(hold[,1])))       #calculate stdev of log times to fixation 
 sterrlt=stdevlt/sqrt(length(hold[,1]))                #calculate stderr of log times to fixation 
 out=c(meanlt,sterrlt,mediant,q1[[1]],q3[[1]],length(hold[,1]),repspastmax,fraction1s) 
 return(out) 
 } #end SUMSTATS 
#############################################################################################
####     
#end subroutines 
#############################################################################################
#### 
overall.start=Sys.time() 
#############################################################################################
#### 
N=128 
p.step=c(8,16,32,64) #2,4,  
m.step=c(4/128,8/128,16/128) 
d.step=c(1) 
#reps=250 
tmax=100000000  
superreps=5  
#################################################################################### 
for (i in 1:superreps) 
 { 
 hold.all=matrix(NA,2*length(p.step)*length(m.step)*length(d.step),12,byrow=T) #holds final summary data 
             
 # 2 times to accommodate dispesal and coalescence 
             
 # Type N p d m meanlt sterrlt meanmedt lower-quartile upper-quartile reps repspastmax fraction-1's 
 h=1 #counter for rows in the matrix hold 
 
#DISPERSAL (coalescence with 1 individual) 
for (p in p.step) 
 { 
 n=N/p #get correspoonding pop size given p pops and toal size N 
 for(m in m.step) 
  { 
  for(d in d.step) 
   { 
  
 ######################################################################################
############### 
   hold <- foreach(runs=rep(1,200 ), .combine='rbind') %dopar% MO.COAL.DIFF(runs,p,n,m,d,tmax) 
  
 ######################################################################################
################ 
   rep.output=SUMSTATS(hold,tmax) 
   print(c(i,"Dispersal",p,d,m))   #keep track of how long simulation has run 
   type=1 # use number 1 for dispersal 
   hold.all[h,]=c(type,p,d,m,rep.output) 
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   h=h+1 #save 
   } # end of d loop 
  } # end of m loop   
 } # end of p loop 
 
#COALESCENCE 
for (p in p.step) 
 { 
 n=N/p #get correspoonding pop size given p pops and toal size N 
 for(m in m.step) 
  { 
  #c=m/n # coalescence as function of movement (each coalescent event gives n dispersals) 
  for(d in d.step) 
   { 
   
#############################################################################################
######## 
   hold <- foreach(runs=rep(1,200 ), .combine='rbind') %dopar% MO.COAL.PW(runs,p,n,m,d,tmax) 
  
 ######################################################################################
################ 
   print(c(i,"Coalescence",p,d,m))   
   rep.output=SUMSTATS(hold,tmax) 
   type=2 # use number not words so output is data.frame  
   hold.all[h,]=c(type,p,d,m,rep.output) 
   h=h+1 #save 
   } # end of d loop 
  } # end of m loop   
 } # end of p loop 
 r.holdall=nrow(hold.all) #get number of rows in hold.all 
 name=paste("H",i,sep="") #create super rep names H1, H2, etc (Hi) 
 assign(name,cbind(matrix(i,r.holdall,1),hold.all)) #assign names to superrep matrices 
 } # end of superreps loop 
super.hold.all= rbind(H1,H2,H3,H4,H5)  #   #MANUALLY ADJUST SUPERREPS if not equal 5 
 
 
 
#################################################### 
overall.time=Sys.time() - overall.start 
print(c(overall.time))      
##################################################    p n sz lam   mov     mean        err  median       q1       
q3 runs pastmax X1.s 
#############################################################################################
################################### 
dat1D=super.hold.all[super.hold.all[,5]==m.step[1] & super.hold.all[,2]==1,] 
dat1Dm=aggregate(dat1D[,6], by=list(dat1D[,3]),FUN=mean)#,na.action = na.omit 
dat1Dse=sqrt(aggregate(dat1D[,6], by=list(dat1D[,3]),FUN=var))/superreps#,na.action = na.omit 
dat1C=super.hold.all[super.hold.all[,5]==m.step[1] & super.hold.all[,2]==2,] 
dat1Cm=aggregate(dat1C[,6], by=list(dat1C[,3]),FUN=mean)#,na.action = na.omit 
dat1Cse=sqrt(aggregate(dat1C[,6], by=list(dat1C[,3]),FUN=var))/superreps #, na.action = na.omit 
 
dat2D=super.hold.all[super.hold.all[,5]==m.step[2] & super.hold.all[,2]==1,]  
dat2Dm=aggregate(dat2D[,6], by=list(dat2D[,3]),FUN=mean)  #,na.action = na.omit 
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dat2Dse=sqrt(aggregate(dat2D[,6], by=list(dat2D[,3]),FUN=var))/superreps #,na.action = na.omit 
dat2C=super.hold.all[super.hold.all[,5]==m.step[2] & super.hold.all[,2]==2,] 
dat2Cm=aggregate(dat2C[,6], by=list(dat2C[,3]),FUN=mean)  #,na.action = na.omit  
dat2Cse=sqrt(aggregate(dat2C[,6], by=list(dat2C[,3]),FUN=var))/superreps  #,na.action = na.omit 
 
dat3D=super.hold.all[super.hold.all[,5]==m.step[3] & super.hold.all[,2]==1,] 
dat3Dm=aggregate(dat3D[,6], by=list(dat3D[,3]),FUN=mean) #,na.action = na.omit 
dat3Dse=sqrt(aggregate(dat3D[,6], by=list(dat3D[,3]),FUN=var))/superreps  # ,na.action = na.omit 
dat3C=super.hold.all[super.hold.all[,5]==m.step[3] & super.hold.all[,2]==2,] 
dat3Cm=aggregate(dat3C[,6], by=list(dat3C[,3]),FUN=mean)  #,na.action = na.omit 
dat3Cse=sqrt(aggregate(dat3C[,6], by=list(dat3C[,3]),FUN=var))/superreps  #,na.action = na.omit 
 
win.graph() 
min=min(super.hold.all[,6],na.rm=T) 
max=max(super.hold.all[,6],na.rm=T) 
plot(c(0,64),c(min,max),type='n',xlab="number of patches",ylab="mean time to fixation (log10)",cex.lab=1.5)# 
main="Moran" 
 
lines(c(dat1Dm[,1]),c(dat1Dm[,2]),lty="dotted",col="blue")  
points(dat1D[,3]-0.5,dat1D[,6],col="blue",cex=1) 
lines(dat1Cm[,1],dat1Cm[,2],col="blue",lty="longdash")   
points(dat1C[,3]+0.5,dat1C[,6],col="blue",cex=1, pch=20) 
 
lines(dat2Dm[,1],dat2Dm[,2],lty="dotted",col="brown")  
points(dat2D[,3]-0.5,dat2D[,6],col="brown",cex=1) 
lines(dat2Cm[,1],dat2Cm[,2],col="brown",lty="longdash")  
points(dat2C[,3]+0.5,dat2C[,6],col="brown",cex=1,pch=20) 
  
lines(dat3Dm[,1],dat3Dm[,2],lty="dotted",col="black")  
points(dat3D[,3]-0.5,dat3D[,6],col="black",cex=1) 
lines(dat3Cm[,1],dat3Cm[,2],col="black",lty="longdash")  
points(dat3C[,3]+0.5,dat3C[,6],col="black",cex=1,pch=20) 
 
#points(1,3.949,col="black",cex=1, pch=8) #asterisk=8, plus=3, x=4 
 
#setwd("C:/Users/Janis/Desktop/") 
#write.csv(super.hold.all, file="Data Fig 2a.csv")   
 
 

Fisher-Wright model: Compare pairwise with diffuse coalescence 
#############################################################################################
##### 
#import packages 
library(foreach) 
library(doParallel) 
cl=makeCluster(7) 
registerDoParallel(cl) 
#######################starting conditions 
FW.COAL.PAIR=function(reps,p,n,m,tmax) 
 { 
 meta.c=matrix(rbinom(p*n,1,0.5),n,p,byrow=F) #starting metapopulation same in dispersal and coalescence 
 for (t in (1:tmax)) 
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 { 
 #FISHER-WRIGHT BIRTH-DEATH 
 for (j in (1:p))                #for each population 
   { 
   freq=sum(meta.c[,j])/n         # calculate frequency in population 
   meta.c[,j]=rbinom(n,1,freq)    # replace that population with random number of two types based on 
frequency in previous 
   } 
  #COALESCENCE PAIRWISE 
  rand.pids=sample(1:p)#randomize populations prior to coalescence to simplify selection of pops without 
replacement 
  meta.c=meta.c[,rand.pids] 
  cevents=N*m/n # number of coalescence events  
  #e.g. with 1 cevent diffuse coalescencw fuses 2 pops, with 2 fuses 4 pops 
  #glob.freq=sum(meta.c)/N 
  if (cevents<1) 
   { 
   sum.c=NA;t=NA 
   break  
   } 
  if (cevents>=1) 
  { 
  for (i in (1:cevents)) 
   { 
   pop1.half=meta.c[(1:(n/2)),i] # sample half from one different populations in the metapop without 
replacement 
   pop2.half=meta.c[(1:(n/2)),(cevents+i)] #sample half from another population 
   temp=pop1.half 
   meta.c[(1:(n/2)),i]=meta.c[1:(n/2),(cevents+i)]  
   meta.c[(1:(n/2)),(cevents+i)]=temp 
   meta.c[,i]=sample(meta.c[,i]) # rerandomize so order is not maintained 
   meta.c[,(cevents+i)]=sample(meta.c[,(cevents+i)]) 
   } #end cevents 
  }#end if cevents  
  sum.c=sum(meta.c)  
  if (sum.c==0|sum.c==N) #test for fixation 
   {  
   break 
   }  
  }  #end t loop 
 hold=c(t,sum.c/N) 
 return(hold) 
} # 
################################# 
FW.COAL.DIF=function(reps,p,n,m,tmax) 
 { 
 meta.c=matrix(rbinom(p*n,1,0.5),n,p,byrow=F) #starting metapopulation same in dispersal and coalescence 
 for (t in (1:tmax)) 
 { 
 #FISHER-WRIGHT BIRTH-DEATH 
 for (j in (1:p))                #for each population 
   { 
   freq=sum(meta.c[,j])/n         # calculate frequency in population 
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   meta.c[,j]=rbinom(n,1,freq)    # replace that population with random number of two types based on 
frequency in previous 
   } 
  #COALESCENCE DIFFUSE 
  rand.pids=sample(1:p)#randomize populations prior to coalescence to simplify selection of pops without 
replacement 
  meta.c=meta.c[,rand.pids] 
  cevents=N*m/n # number of coalescence events  
  pops=N*m/n*(p-1) #e.g. with 1 cevent diffuse coalescencw fuses 2 pops, with 2 fuses 4 pops 
  #glob.freq=sum(meta.c)/N 
  if (cevents<1) 
   { 
   sum.c=NA;t=NA 
   break  
   } 
  if (cevents>=1) # pops involved in pairwise pp = 2*c; which is (pp+2)/2 
  { 
  select=meta.c[,1:c(cevents+1)] # choose pops to coalesce - order previously randomized    
  vect=as.vector(select)      # turn into a 1-D array 
  randa=sample(vect) #randomize individuals in array 
  rematrix=matrix(randa,n,c(cevents+1),byrow=T)#return to same number of pops 
  for (i in 1:c(cevents+1)) 
    { 
    meta.c[,i]=rematrix[,i] #return to same number of pops 
    } 
  sum.c=sum(meta.c) 
  }#end if cevents 
  if (sum.c==0|sum.c==N) #test for fixation 
   {  
   break 
   }  
  }  #end t loop 
 hold=c(t,sum.c/N) 
 return(hold) 
} #end of function MO.COAL.DIF 
####################################################################################### 
SUMSTATS=function(hold,tmax) # summarize over reps 
 { 
 pastmax=subset(hold,hold[,1]>=tmax) #array of data that did not go to monodominance 
 repspastmax=length(pastmax[,1]) 
 fraction1s=sum(hold[,2])/length(hold[,2]) 
 mediant=(median(hold[,1], na.rm=T))     #calculate median 
 q1=(quantile(hold[,1],c(0.25),na.rm=T)) #calculate quantiles 
 q3=(quantile(hold[,1],c(0.75),na.rm=T)) 
 meanlt=sum(log10(hold[,1]))/length(hold[,1])  #calculate mean of log times to fixation 
 stdevlt=sqrt(var(log10(hold[,1])))            #calculate stdev of log times to fixation 
 sterrlt=stdevlt/sqrt(length(hold[,1]))        #calculate stderr of log times to fixation 
 out=c(meanlt,sterrlt,mediant,q1[[1]],q3[[1]],length(hold[,1]),repspastmax,fraction1s) 
 return(out) 
 } #end function SUMSTATS 
#############################################################################################
####     
#end subroutines 
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#############################################################################################
#### 
overall.start=Sys.time() 
N=128 
p.step=c(2,4,8,16,32,64)  
m.step=c(4/128,8/128,16/128) #2/128, 
#reps=1 #dummy variable, assign reps in foreach functions for disp and coal 
tmax=10000000 
superreps=5 # NB: to change, need also to adjust number of H's below 
#############################################################################################
### 
for (i in 1:superreps) 
 { 
 hold.all=matrix(NA,2*length(p.step)*length(m.step),11,byrow=T) #holds final summary data for disp and coal 
 h=1 #line increment for hold.all 
 #PAIRWISE 
 for (p in p.step) 
  { 
 n=N/p 
 for(m in m.step) 
   { 
   
#######################################################################################  
   hold <- foreach(reps=rep(1,200), .combine='rbind') %dopar% FW.COAL.PAIR(reps,p,n,m,tmax) 
  
 ######################################################################################
#  
   rep.output=SUMSTATS(hold,tmax)# subroutine to do summary stats 
   print(c(i,"Pairwise",p,m))   # keep track of how long simulation has run 
   type=1 # use number 1 for pairwise coalescence   
   hold.all[h,]=c(type,p,m,rep.output) 
   h=h+1 #save 
   } # end of m loop   
  } # end of p loop 
 
 #DIFFUSE 
 for (p in p.step) 
  { 
   n=N/p  
  for(m in m.step) 
   { 
   ##########################################################################################  
   hold <- foreach(reps=rep(1,200), .combine='rbind') %dopar% FW.COAL.DIF(reps,p,n,m,tmax) 
   
##########################################################################################  
   rep.output=SUMSTATS(hold,tmax) # subroutine to do summary stats 
   print(c(i,"Diffuse",p,m))  
   type=2 # use number 2 for diffuse coalescence  
   hold.all[h,]=c(type,p,m,rep.output)  
   h=h+1 #save 
   } # end of m loop   
  } # end of p loop 
 r.holdall=nrow(hold.all) #get number of rows in hold.all 
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 name=paste("H",i,sep="") #create super rep names H1, H2, etc (Hi) 
 assign(name,cbind(matrix(i,r.holdall,1),hold.all)) #assign names to superrep matrices 
 } # end of superreps loop 
super.hold.all= rbind(H1,H2,H3,H4,H5)  # ,H5  #MANUALLY ADJUST SUPERREPS if not equal 5 
#################################################### 
overall.time=Sys.time() - overall.start 
print(c(overall.time))      
##################################################    p n sz lam   mov     mean        err  median       q1       
q3 runs pastmax X1.s 
#############################################################################################
################################### 
dat1D=super.hold.all[super.hold.all[,4]==m.step[1] & super.hold.all[,2]==1,] 
dat1Dm=aggregate(dat1D[,5], by=list(dat1D[,3]),FUN=mean)#,na.action = na.omit 
dat1Dse=sqrt(aggregate(dat1D[,5], by=list(dat1D[,3]),FUN=var))/superreps#,na.action = na.omit 
 
dat1C=super.hold.all[super.hold.all[,4]==m.step[1] & super.hold.all[,2]==2,] 
dat1Cm=aggregate(dat1C[,5], by=list(dat1C[,3]),FUN=mean)#,na.action = na.omit 
dat1Cse=sqrt(aggregate(dat1C[,5], by=list(dat1C[,3]),FUN=var))/superreps #, na.action = na.omit 
 
dat2D=super.hold.all[super.hold.all[,4]==m.step[2] & super.hold.all[,2]==1,]  
dat2Dm=aggregate(dat2D[,5], by=list(dat2D[,3]),FUN=mean)  #,na.action = na.omit 
dat2Dse=sqrt(aggregate(dat2D[,5], by=list(dat2D[,3]),FUN=var))/superreps #,na.action = na.omit 
dat2C=super.hold.all[super.hold.all[,4]==m.step[2] & super.hold.all[,2]==2,] 
dat2Cm=aggregate(dat2C[,5], by=list(dat2C[,3]),FUN=mean)  #,na.action = na.omit  
dat2Cse=sqrt(aggregate(dat2C[,5], by=list(dat2C[,3]),FUN=var))/superreps  #,na.action = na.omit 
 
dat3D=super.hold.all[super.hold.all[,4]==m.step[3] & super.hold.all[,2]==1,] 
dat3Dm=aggregate(dat3D[,5], by=list(dat3D[,3]),FUN=mean) #,na.action = na.omit 
dat3Dse=sqrt(aggregate(dat3D[,5], by=list(dat3D[,3]),FUN=var))/superreps  # ,na.action = na.omit 
dat3C=super.hold.all[super.hold.all[,4]==m.step[3] & super.hold.all[,2]==2,] 
dat3Cm=aggregate(dat3C[,5], by=list(dat3C[,3]),FUN=mean)  #,na.action = na.omit 
dat3Cse=sqrt(aggregate(dat3C[,5], by=list(dat3C[,3]),FUN=var))/superreps  #,na.action = na.omit 
 
#dat4D=super.hold.all[super.hold.all[,4]==m.step[4] & super.hold.all[,2]==1,]  
#dat4Dm=aggregate(dat4D[,5], by=list(dat4D[,3]),FUN=mean)  #,na.action = na.omit 
#dat4Dse=sqrt(aggregate(dat4D[,5], by=list(dat4D[,3]),FUN=var))/superreps #,na.action = na.omit 
#dat4C=super.hold.all[super.hold.all[,4]==m.step[4] & super.hold.all[,2]==2,] 
#dat4Cm=aggregate(dat4C[,5], by=list(dat4C[,3]),FUN=mean)  #,na.action = na.omit  
#dat4Cse=sqrt(aggregate(dat4C[,5], by=list(dat4C[,3]),FUN=var))/superreps  #,na.action = na.omit 
 
win.graph() 
min=min(super.hold.all[,5],na.rm=T) 
max=max(super.hold.all[,5],na.rm=T) 
plot(c(0,64),c(min,max),type='n',xlab="number of patches",ylab="mean time to fixation (log10)",cex.lab=1.5) 
   # ,main= "Pairwise vs. diffuse coalescence",sub="standardized for equal movement") 
 
lines(dat1Dm[,1],dat1Dm[,2],lty="longdash",col="blue")  
points(dat1D[,3]-0.5,dat1D[,5],col="blue",cex=1, pch=20) 
lines(dat1Cm[,1],dat1Cm[,2],col="blue",lty="dotted")  
points(dat1C[,3]+0.5,dat1C[,5],col="blue",cex=1) 
 
lines(dat2Dm[,1],dat2Dm[,2],lty="longdash",col="brown")  
points(dat2D[,3]-0.5,dat2D[,5],col="brown",cex=1, pch=20) 
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lines(dat2Cm[,1],dat2Cm[,2],col="brown",lty="dotted")  
points(dat2C[,3]+0.5,dat2C[,5],col="brown",cex=1) 
  
lines(dat3Dm[,1],dat3Dm[,2],lty="longdash",col="black")  
points(dat3D[,3]-0.5,dat3D[,5],col="black",cex=1, pch=20) 
lines(dat3Cm[,1],dat3Cm[,2],col="black",lty="dotted")  
points(dat3C[,3]+0.5,dat3C[,5],col="black",cex=1) 
 
#lines(dat4Dm[,1],dat4Dm[,2],lty="longdash",col="black")  
#points(dat4D[,3]-0.5,dat4D[,5],col="black",cex=0.75) 
#lines(dat4Cm[,1],dat4Cm[,2],col="black",lty="dotted")  
#points(dat4C[,3]+0.5,dat4C[,5],col="black",cex=1,pch=20) 
 
#setwd("C:/Users/Janis Antonovics/Desktop/") 
#write.csv(super.hold.all, file="Data Fig 2b.csv")   
 

 


